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Abstract

Background: While single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is
a well-established noninvasive procedure for the evaluation of patients with coronary artery disease (CAD), it is
unable to detect the presence of, or underestimates the extent of CAD in certain patients. We aimed to show that
a bio-impedance device can detect early post-stress changes in several hemodynamic parameters, thereby serving
as a potential marker for the presence of significant ischemia.

Methods: Prospectively enrolled patients, referred to our Medical Center for clinically-indicated MPI, underwent
testing using a Non-Invasive Cardiac System (NICaS) before and immediately after exercise. The differences between
rest and stress hemodynamic parameters were compared with the severity and extent of myocardial ischemia by
MPI. The study included 198 patients; mean age was 62 years, 26% were women, 54% had hypertension, and 29%
diabetes mellitus. Of them, 188 patients had <10%, and 10 had > 10% of myocardial ischemia.

Results: In the first group, there was a significantly greater increase in post-exercise stroke index, stroke work index,
cardiac index and cardiac power index (19.2, 29.1, 90.5 and 107%, respectively) compared with the second group
(=27, 38,437 and 53.5%, respectively), as well as a significantly greater decrease in total peripheral resistance index
(—38.7% compared with — 16.3%), with corresponding p values of 0.015, 0.017, 0.040, 0.016, and < 0.001,
respectively.

Conclusions: Our data suggest that immediate post-stress changes in several hemodynamic parameters, detected
by the NICaS, can be used as an important adjunct to SPECT MPI for the early detection of myocardial ischemia.
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Background

Single photon emission computed tomography (SPECT)
myocardial perfusion imaging (MPI) is a well-established
noninvasive procedure for the evaluation and risk strati-
fication of patients with coronary artery disease (CAD)
[1]. However, it has been recognized that in certain pa-
tients SPECT MPI is unable to detect the presence of, or
underestimates the extent of CAD. The fact that moder-
ate to severe perfusion defects are noted in less than half
of the patients with significant left main disease [2] has
stimulated studies to improve the diagnostic accuracy of
SPECT MPL Such studies have analyzed post-stress pa-
rameters such as left ventricular ejection fraction [3, 4],
wall motion abnormalities [5] and transient left ventricu-
lar dilation [6] with images acquired on conventional
Anger cameras as long as 60 min after the stress tracer
injection. Such delayed assessment may miss early ische-
mic stunning as a result of its transient nature.

The Non-Invasive Cardiac System (NICaS, NI Medical,
Israel) is a whole-body bio-impedance device capable of
measuring various hemodynamic parameters [7-11]. We
hypothesized that the non-invasive detection of an early
post-stress decrease in cardiac performance may serve as
a potential marker for the presence of significant or ex-
tensive ischemia. We therefore aimed to test for an early
post-stress change in several hemodynamic parameters
by the NICaS, and its relationship to the severity and ex-
tent of myocardial ischemia in patients undergoing exer-
cise stress MPI using a novel cadmium-zinc-telluride
SPECT camera.

Methods

Study population

We prospectively enrolled 198 patients who were re-
ferred to the Nuclear Cardiology Center at the Sheba
Medical Center, Tel Hashomer, Israel, for a clinically-
indicated exercise stress MPI study. Exclusion criteria
included patients with: unstable angina, decompensated
heart failure, systolic blood pressure > 200 mmHg or dia-
stolic blood pressure > 110 mmHg, uncontrolled arrhyth-
mias, severe aortic stenosis, acute pulmonary embolism,
acute myocarditis or pericarditis, acute aortic dissection,
intra- and extra-cardiac shunts, hemodialysis and those
aged <18 or >80 years of age. The study was approved
by the hospital’s Institutional Review Board and all pa-
tients provided written informed consent.

Exercise stress protocol and image acquisition sequence

Beta blockers and calcium-channel antagonists were ter-
minated at least 24 h before testing, and nitrates at least
6h before testing. During the pre-imaging stress-lab
evaluation and procedures, standard 12 leads for ECG
monitoring and leads for image gating were applied, and
a venous catheter was inserted into an antecubital vein.
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The imaging room was equipped with an ECG monitor,
emergency cart and oxygen source.

A “stress-first-rest-second” protocol was used, as previ-
ously described [12-21]. Briefly, after obtaining baseline
heart rate, blood pressure, and a 12 lead ECG, a
symptom-limited treadmill-exercise (Bruce protocol) was
performed. At peak exercise, an IV bolus of 6-11 mCi
99mTc-sestamibi, according to a body mass index-related
dose schedule, was injected. The first imaging was started
at least 20 min after the IV tracer injection. The patient
was placed in the supine position of the cadmium-zinc-
telluride-SPECT camera (Discovery NM 530c, General
Electric Healthcare, Israel). The detector was positioned
to include the entire heart image, as well as to isolate the
heart from extra-cardiac activity. Acquisitions utilized a
20% energy window centered around the 140 KeV peak of
99mTc-sestamibi, and al6-bin ECG-gating was performed
using a 50% acceptance window. Subsequently, the patient
was placed in a prone position and imaging was repeated.
After at least 1.5 h, the patient returned to the lab for rest
injection and acquisition using 16-31 mCi of 99mTc-
sestamibi, according to a body mass index-related dose
schedule. Images were reoriented into short-axis and
vertical and horizontal long-axis slices using standard soft-
ware (QPS/QGS, Cedars-Sinai Medical Center, Los
Angeles, CA, USA). All image contours were reviewed by
experienced technologists and nuclear cardiologists on a
case-by-case basis and were individually adjusted if neces-
sary [12-21].

Automated quantification of perfusion

The QPS software computed the total perfusion deficit
score by integrating the hypo-perfusion severities below
normal limits in polar map coordinates [14]. Normal
limit thresholds were defined as 3.0 mean absolute devi-
ations (approximately equivalent to 2.5 standard devia-
tions) for each polar map sample. Ischemic total
perfusion deficit was calculated as an absolute difference
between stress and rest total perfusion deficit [15, 16,
18], and was expressed as a percentage.

The non-invasive cardiac system

The NICaS calculates the stroke volume by measuring
impedance cardiography in a tetra-polar mode, derived
from electrodes placed on one wrist and the contra-
lateral ankle [7, 8]. During transmission of an electrical
current through the body, resistivity to its conduction
(bio-impedance) is measured. The resistivity of blood
and plasma is the lowest in the body, 150 and 63 Q/cm,
respectively, while resistivity of cardiac muscle, lungs
and fat is 750, 1275 and 2500 Q2/cm, respectively. Thus,
when an alternating current of 32.5 kHz, 1.4 mA is deliv-
ered through the two electrodes, it is primarily distrib-
uted via the extracellular fluid and the blood, and the
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changes in body resistivity are therefore related to the
dynamic changes of the blood and plasma volume.
Therefore, the measured bio-impedance and its fluctua-
tions over time are proportional to the stroke volume.
Consequently, each systolic increase in the aortic blood
volume is associated with a proportional increase in the
measurable conductance of the whole body. In addition,
a standard three-lead ECG connection is made for meas-
uring the pulse rate. Patient age, gender, weight, height,
hematocrit and electrolytes are entered into the NICaS
when the monitoring is started and are used for the
stroke volume calculation. Cardiac output is calculated
by multiplying stroke volume by the heart rate.

Measurements are adjusted to the body surface area to
yield stroke index (SI) and cardiac index (CI). Mean ar-
terial pressure (MAP), calculated from standard blood
pressure measurements, together with SI and CI allows
the calculation of stroke work index (SWI = MAP*SI/
7500.8 J/m?), cardiac power index (CPI=MAP*Cl/451
W/m?) and total peripheral index (TPRI = MAP/CI*80
Dyn*Sec/cm®*m?).

This simple to operate, non-invasive technique has
been validated in several studies as a reliable estimation
of resting CO, compared with traditional, invasive tech-
niques in different settings including healthy subjects,
patients with heart failure and ischemia [7-11]. Evalu-
ation of impedance was performed both before and im-
mediately after exercise. Given that the patient needs to
be motionless during the measurement to avoid motion
artifacts, data acquisition was carried out about 1 min
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after completion of exercise. The differences between
rest and stress hemodynamic parameters were compared
with the severity and extent of myocardial ischemia by
MPL

Statistics

Statistical analyses were performed using SPSS software
(version 2b, IBM Corporation). All baseline variables are
described as mean + SD. Rest, stress and changes of
hemodynamic parameters are described as mean and
95% confidence interval. A one-way ANOVA was used
to compare differences for continuous variables. A chi-
square test was used to compare differences across sub-
groups for categorical variables. A 2-tailed p <0.05 as a
cut-off was considered statistically significant. Receiver
operator characteristic (ROC) curve was used to calcu-
late sensitivity and specificity.

Results

Patient baseline clinical characteristics and medications
are presented in Table 1. Mean age was 62 (19) years
and 74% were males. A sizeable percentage of patients
had CAD, with a previous myocardial infarction in 22%,
previous percutaneous transluminal coronary angio-
plasty in 18%, and previous coronary artery bypass graft-
ing in 5%. Notably, the characteristics of those patients
with myocardial ischemia <10% were similar to those
with myocardial ischemia > 10%, with no significant dif-
ferences in any of the baseline parameters. Patient base-
line (resting) hemodynamic parameters are presented in

Table 1 Demographics and general characteristics of all patients and of subgroups (myocardial ischemia <10 and > 10%)

Parameter All patients Myocardial ischemia >10% - N 10 P value
N-198 <10% - N 188

Myocardial ischemia (%) 24+ 38% 1.8+ 26% 144 +35% >0.001
Age (year), mean + SD 61.8+94 619+94 604+93 0.636
Male, n (%) 147 (74) 137 (72) 10 (100) 0.166
BMI (kg/mz), mean £ SD 275£36 274+£35 295+48 0.08
Diabetes mellitus, n (%) 58 (29.3) 54 (28.7) 3 (30) 0.923
Hypertension, n (%) 106 (53.5) 98 (52.1) 7 (70) 0.265
Smoking, n (%) 31 (15.7) 30 (16.0) 1(10) 0.620
Dyslipidemia, n (%) 135 (68.2) 128 6 (60) 0615
MI, n (%) 44 (22.2) 39 (20.7) 4 (40) 0.149
PTCA, n (%) 35(17.7) 31 (16.5) 3 (30) 0.268
CABG, n (%) 10 (5.1) 9 (4.8) 1(10) 0.894
PVD, n (%) 5(25) 5(2.7) 0 0.605
TIA, n (%) 1(0.5) 1(0.5) 0 0819
Beta Blocker, n (%) 52 (26.0) 50 (26.6) 2 (20 0.653

BMI Body mass index, CABG Coronary artery bypass grafting, Ml Myocardial infarction, PTCA Percutaneous transluminal coronary angioplasty, PVD Peripheral

vascular disease, SD Standard deviation, TIA Transient ischemic attack
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Table 2 Baseline (rest) hemodynamic parameters of all patients and of subgroups (myocardial ischemia <10 and > 10%)

Parameter All patients Myocardial ischemia > 10% P value
<10%
SBP (mmHg), mean + SD 157+ 21 157+ 21 154+ 24 0.729
DBP (mmHg), mean + SD 85+ 10 85+ 11 87+9 0.967
MAP (mmHg), mean + SD 108+ 12 108+ 12 109+ 13 0.708
HR (beats/s), mean + SD 72+12 73+12 69+6 0.398
SI (ml/m?), mean + SD 372+6.7 370 394+£6.1 0.271
SWI (J/m?), mean + SD 050+0.10 049 0.54 0.156
Cl (i/min/m?), mean + SD 270+063 269 277 0.798
CPI (W/m?), mean + SD 060+0.15 0.59 063 0.506
TPRI (Dyn*S/cmS*mz), mean + SD 3163 £ 905 3171 3012 0.591
GGl, mean = SD 129+35 13.0 113+ 0.133

CPI Cardiac power index, C/ Cardiac index, DBP Diastolic blood pressure, GGI Granov Goor index, HR Heart rate, S/ Stroke index, MAP Mean arterial pressure, SBP
Systolic blood pressure, SWI Stroke work index, TPRI Total peripheral resistance index

Table 2. Once again, there were no statistically signifi-
cant differences between patients with myocardial ische-
mia <10% and those with myocardial ischemia > 10%.
The hemodynamic changes between rest and stress in
patients with myocardial ischemia <10% and in those
with myocardial ischemia > 10% are presented in Table 3.
In the first group, there was a significantly greater in-
crease in post-exercise SI, SWI, CI and CPI (19.2, 29.1,
90.5 and 107%, respectively) compared with the second
group (- 2.7, 3.8, 43.7 and 53.5%, respectively), as well as
a significantly greater decrease in TPRI (- 38.7%) com-
pared with the second group (-16.3%), with

corresponding p values of 0.015, 0.017, 0.040, 0.016,
and < 0.001, respectively.

Fig. 1 provides a visual presentation of the change in
cardiac function in patients with myocardial ischemia
<10% and in those with myocardial ischemia > 10%. As
may be clearly seen, the SI in the first group increased
as expected with an associated marked increase in the
CL however, the SI in the second group actually de-
creased and thus only a mild increase was noted in the
CI, mediated only by the increased heart rate.

Fig. 2 demonstrates the ROC curve for myocardial is-
chemia > 10% vs. change in the SI (cut off = 0) from rest

Table 3 Hemodynamic changes between rest and stress in patients with myocardial ischemia <10 and > 10%. Data are presented

as mean (95% confidence interval)

Parameter Myocardial Ischemia > 10% P Value
<10%
METS 9.9 (95, 10.2) 11.2 (103, 12.0) 0.104
Time to target HR 08:38 (08:17, 08:58) 09:59 (08:56, 11:02) 0.074
Max. HR achieved 147 (145, 149) 143 (137, 149) 0.256
ASBP (mmHg) 12.5% (10.8, 14.2%) 6.9% (1.3, 12.4%) 0.146
ADBP (mmHg) 52% (3.4, 7.0%) 7.9% (1.3, 14.6%) 0499
AMAP (mmHg) 84% (7.0, 9.7%) 7.8% (2.9, 12.6%) 0.764
AHR (beats/s)? 60.0% (55.4, 64.6%) 48.7% (26.7, 70.7%) 0.281
ASI (ml/m2) 19.2% (15.2, 23.2%) —2.7% (=8.2, 2.7%) 0.015
ASWI (J/m2) 29.1% (24.4, 33.8%) 3.8% (—5.6, 13.3%) 0017
ACI (I/min/m2) 90.5% (81.8, 99.2%) 43.7% (22.1, 65.3%) 0.040
ACPI (W/m?2) 107% (97.2, 117%) 53.5% (33.7, 73.3%) 0.016
ATPRI —38.7% (—41.0, —36.4%) —-16.3% (-30.7, —1.8%) <0.001
AGGI 22.2% (16.7, 27.6%) 3.8% (—3.1, 10.6%) 0.132

#Hemodynamic measurements were performed with an average delay of 03:30 (03:15, 03:50) minutes from end of treadmill stress. HR was recovered to 114 (111,
116) and 98 (84, 113) for the myocardial ischemia <10 and > 10% groups, respectively
Cl Cardiac index, CPI Cardiac power index, DBP Diastolic blood pressure, GG/ Granov Goor index, HR Heart rate, MAP Mean arterial pressure, METS Metabolic
equivalents, SBP Systolic blood pressure, S/ Stroke index, SWI Stroke work index, TPRI Total peripheral resistance index
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to stress. Noteworthy, are the areas under the curve with
95% confidence interval, sensitivity, and specificity. As
may be seen, a change in SI of <0 from rest to stress has
70.0% sensitivity and 73.1% specificity for detecting myo-
cardial ischemia of > 10%.

Discussion

While SPECT MPI is an excellent noninvasive procedure
for the detection and risk stratification of patients with
CAD, it may be unable to detect the presence of disease
in certain patients and may underestimate its severity in
others. As a result, several studies have attempted to
tackle this issue using various approaches [3—6]. In this
prospective study we demonstrate that the non-invasive
detection of an early post-stress decrease in cardiac per-
formance may serve as a potential marker for the pres-
ence of significant or extensive ischemia.

As already shown in multiple prior studies, the
NICaS whole-body bio-impedance device is capable of
reliably measuring various hemodynamic parameters
[7-11]. In this study we used the NICaS to examine
the hemodynamic changes between rest and stress in
patients with myocardial ischemia <10% and in those
with myocardial ischemia >10%. As seen in Table 3,
the patients with ischemia were unable to increase
their SWI, CI, and CPI to the same extent as those
without significant ischemia, and were unable to de-
crease TPRI to the same extent as those without sig-
nificant ischemia.

Most notably, the SI actually decreased in those pa-
tients with myocardial ischemia >10% (Table 3, Fig. 1).
While the SI in patients without significant ischemia in-
creased as expected with an associated marked increase
in their CI, it actually decreased in those with ischemia,
and therefore only a mild increase was noted in the CI,
mediated only by the increased heart rate (Fig. 1). In-
deed, any decrease in SI may be used to detect myocar-
dial ischemia >10% with 70.0% sensitivity and 73.1%
specificity (Fig. 2). The novel NICaS technology consist-
ently identifies this pattern and therefore may be an im-
portant tool in the detection of ischemia.

The current study certainly has some limitations.
Beta-blocker therapy was discontinued at least 24h
prior to testing and no information was available re-
garding the use of other medications. In addition, our
findings are applicable only to the present study
population, comprising patients with an intermediate
pretest probability for the presence of CAD without
significant comorbidities. Moreover, the small number
of patients with myocardial ischemia >10% limits cer-
tainly impacts the strength of the data. Of note, the
reproducibility of the measured hemodynamic param-
eters may be somewhat limited by the patients’ phys-
ical fitness and performance on the particular test
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day. Finally, it may also have been useful to have had
echocardiographic data to look for valvular comorbid-
ity and to have had additional validation of the stroke
volume at rest. We intend to address these limitations
in future work as well as to obtain correlation with
true anatomy by coronary angiography.

Conclusions

The results of the present study suggest that the imme-
diate post-stress changes in several hemodynamic pa-
rameters as detected by the NICaS can be used as an
important adjunct to the diagnostic approach for the
early detection of myocardial ischemia. These findings
can be used to improve risk assessment prior to a deci-
sion regarding the need to proceed with more complex
and costly imaging modalities for the detection of myo-
cardial ischemia. Moreover, future research should ex-
plore the potential use of the NICaS generated
parameters as prognostic markers in the development
and evolution of CAD.
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